
7054 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

Distributed Error Correction Coding Scheme
for Low Storage Blockchain Systems
Huihui Wu , Alexei Ashikhmin, Fellow, IEEE, Xiaodong Wang , Fellow, IEEE,

Chong Li, Senior Member, IEEE, Sichao Yang, and Lei Zhang

Abstract—This article presents a novel way to reduce
blockchain nodes’ memory requirements using error correct-
ing codes. In particular, LDPC codes are taken as examples to
explicitly demonstrate the scheme. The proposed coding scheme
encodes data across multiple blocks, respectively, block headers,
in the blockchain. This leads to a significant reduction in required
memory at each node. We then apply the proposed coding tech-
nique to blockchains organized in two different ways. Our first
scheme has the same protocol for mining, broadcasting, and ver-
ification of blocks, as Bitcoin-type blockchains. Our scheme is
different in that full nodes do not have to store all blocks. Instead
they will need to store only one block of a group of t blocks. In
the second scheme, we consider a new block verification protocol
and an account-based model under the assumption that trans-
mission between any two nodes can be established, as well as
the broadcast transmission. Our block verification protocol uses
the Byzantine fault tolerance algorithm and requires sending a
newly mined block to only a small number of verification nodes,
instead of broadcasting it to the entire network, which leads to
a reduction of the network load.

Index Terms—Block verification protocol, blockchain,
Byzantine fault tolerance (BFT) algorithm, distributed storage,
error correcting codes, low-density parity-check codes.

I. INTRODUCTION

BLOCKCHAIN is a distributed system that builds con-
sensus among the untrusted participants. One of its most

popular applications is the cryptocurrency. Since the launch
of the Bitcoin in 2009 [1], many cryptocurrency systems have
been developed, e.g., Ethereum [2], Ripple [3], Cardano [4],
Zcash [5], etc. Moreover, blockchain systems are also use-
ful in various applications, such as medical data manage-
ment [6], smart contracts [7], and so on. It is believed that

Manuscript received October 25, 2019; revised January 29, 2020
and February 24, 2020; accepted March 10, 2020. Date of publication
March 19, 2020; date of current version August 12, 2020. This work was
supported in part by the Columbia-IBM Blockchain Center and in part by
Nakamoto & Turing Labs. (Corresponding author: Xiaodong Wang.)

Huihui Wu was with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA. He is now with the Department of
Electrical and Computer Engineering, McGill University, Montreal, QC H3A
0E9, Canada (e-mail: huihui.wu.phd@gmail.com).

Alexei Ashikhmin is with the Communications and Statistical Sciences
Research Department, Nokia Bell Laboratories, Murray Hill, NJ 07974 USA
(e-mail: alexei.ashikhmin@nokia-bell-labs.com).

Xiaodong Wang is with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: wangx@ee.columbia.edu).

Chong Li, Sichao Yang, and Lei Zhang are with Nakamoto & Turing
Labs, New York, NY 10036 USA (e-mail: chongl@ntlabs.io; ysc@ntlabs.io;
leizha@ntlabs.io).

Digital Object Identifier 10.1109/JIOT.2020.2982067

the blockchain technique has the potential to revolutionize the
digital world [8].

Nowadays, the Internet of Things (IoT) connects billions of
devices, and each of them generates and exchanges massive
numbers of data. Accordingly, the security issues for such a
large IoT network needs to be addressed, which is a challenge-
able work. First, devices can collude to collapse the IoT or
launch cyber attacks independently. Second, data confidential-
ity, integrity, and authentication are also vital and fundamental
issues. Moreover, typically IoT networks rely on a central
cloud service provider [9], whose failure would be a disas-
ter. The aforementioned concerns call for the application of
blockchain into IoT networks. For example, the blockchain has
been applied in smart grid [10], [11], and IoT data storage [12],
and more applications can be found in [13].

It is also important to note that since devices in the IoT
network may have very limited memories, it looks natural to
design blockchains with only light nodes with small memory
capabilities. Design and analysis of such blockchains are
considered in Sections V and VI, respectively.

Currently, one premise of blockchain systems is that each
full node needs to store the entire blockchain, which will
eventually lead to a lack of storage resources. Specifically,
the total size of the Bitcoin blockchain amounts to around
198 GB [14], including all block headers and transactions,
to the date of February 8, 2019. Therefore, the scalabil-
ity problem has become one of the major concerns in the
blockchain community, as this is vital for the large-scale
application of blockchain.

One solution for the increasing storage problem is to reclaim
the disk space [1] by pruning the old transactions in the
blockchain. However, one noticeable drawback of this solution
lies in the loss of transaction data, and hence leads to the data
unavailability problem. An alternative approach is to deploy
light nodes which have been adopted in Bitcoin, Ethereum,
Zcash, Byteball [15], and perhaps some other blockchains. The
light nodes store only block headers instead of full blocks. This
results in that the light nodes heavily rely on the trusted full
nodes for the block acquisition and verification, which may
not always be a desirable approach.

Recently, novel designs employing coding techniques have
been proposed [16]–[18]. Dai et al. [16] used network cod-
ing, while we consider erasure correcting codes. We believe
that both approaches are interesting research topics, since
in different applications, they may have their own advan-
tages and disadvantages. We also would like to note that the

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1097-3792
https://orcid.org/0000-0002-2945-9240

WU et al.: DISTRIBUTED ERROR CORRECTION CODING SCHEME FOR LOW STORAGE BLOCKCHAIN SYSTEMS 7055

performance evaluation on blockchain platforms is not given
in [16]. Raman and Varshney [17] proposed a secure dis-
tributed coding scheme combining the components of Shamir’s
secret key sharing and private key encryptions. However, they
suggest to use a black box for all the necessary computa-
tions related to the block recovery algorithm, and practical
implementation of such a black box is not provided. So, it is
even not clear whether such a black box is feasible or not.
In contrast, in this article, we explicitly describe all the block
encoding and recovery algorithms. In [18], it is proposed to
use an erasure code to encode and distribute each individual
block, which leads to a reduction of the required memory.
The authors suggest to use random linear codes for encod-
ing each block individually and assign to each node only a
small part of a codeword. This approach leads to a significant
reduction in node memory requirements and allows one to
restore a block even if some blockchain nodes are not available
for some reason. On the other hand, when a new node joins
the blockchain, it needs for each of the previously generated
blocks to: 1) collect some symbols from neighboring nodes; 2)
conduct decoding in order of recovering the block; and 3) con-
duct encoding in order to generate a new parity check symbol
for this block. All these steps, especially step 2), require
large computations. Taking into account that the number of
blocks can be very large, this creates significant problems with
the practical implementation of this approach. In contrast, in
this article, when a new node joins the blockchain, it simply
requests some copies of the memories from several neighbor-
ing nodes. This looks to be a much more practical approach
since it does not require any computations. We also believe
that our approach leads to lower storage requirements for each
node since we suggest to encode a group of blocks.

In this article, in contrast to the above works, we study
the possibility of encoding data across several blocks and
using error correction codes that afford simple decoding.
Specifically, LDPC codes [19] are taken to describe explic-
itly the coding scheme. This allows us to reduce the needed
computational complexity compared, in particular, with [18],
in which inversions of big matrices are required. We design
our encoding scheme to minimize the number of nodes that
should be contacted and the needed computational complex-
ity for restoring a particular blockchain block. In the Example
at the end of Section III-C, we show that the expected val-
ues of these two parameters in our scheme are typically quite
low. We further propose a new simple account-based model
which further reduces the required memory by removing all
full nodes. We also suggest to replace the storage of block
headers by their hashes.

Another bottleneck in the modern blockchain systems lies
in the large network load. In this article, we propose some
ideas that may lead to a reduction of the network load. In
particular, only the block headers are broadcasted over the
network, rather than the whole block.

The contribution of this article can be summarized as
follows.

1) A novel error correcting coding-based distributed stor-
age scheme is presented, which can be performed by the
full nodes in the current blockchain systems. Moreover,

by deploying LDPC codes, the nodes are naturally
embedded with error correction and malicious node
detection properties.

2) A novel blockchain with all light nodes is proposed for
transaction applications using an account-based model.
Another assumption in this system is that a communi-
cation link between any two nodes can be established.
The proposed system reduces both storage cost and
communication cost in a blockchain.

3) A novel block verification protocol with the help of
the Byzantine fault tolerance (BFT) algorithm [20] is
introduced. The new verification protocol involves only
a small number of verification nodes, which lowers
drastically the verification cost in blockchain systems.

The remainder of this article is organized as follows.
Section II gives a brief introduction on the Bitcoin blockchain
while Section III presents the details of the proposed dis-
tributed blockchain coding scheme. Section IV describes the
proposed blockchain with full nodes and Section V proposes
a novel blockchain with all light nodes using the account-
based model. A novel block verification algorithm involves
a small number of nodes that is also provided in this sec-
tion. Moreover, the performance analysis of the proposed
blockchain coding scheme is illustrated in Section VI. Finally,
Section VII concludes this article.

II. PRELIMINARIES ON BITCOIN BLOCKCHAIN

The Bitcoin blockchain [1] is a decentralized ledger that is
used for organizing the cryptocurrency system in which online
payments between any two parties are conducted without a
central financial center. This section briefly describes the main
part of the Bitcoin protocol.

The Bitcoin ledger consists of blocks, and each block
is composed of transactions and a header. Transactions and
blocks are generated and processed by nodes, which are some
computational devices, e.g., computers and mobile phones. In
Bitcoin, there are two categories of nodes—full nodes and light
nodes. Full nodes store the entire blockchain (all generated
blocks) while light nodes save only the block headers.

Each transaction is created and digitally signed by a node,
for instance, a payment from node a to node b would be cre-
ated and signed by a. Then, it is broadcasted to all nodes
over the blockchain network. A full node can conduct mining.
Mining consists of putting several transactions together into
a block and conducting some computational protocol, which
will be discussed below in this section. Next, the block is
broadcasted to all full nodes and each of them checks if the
block was formed correctly (in particular, if all its transactions
are valid), (see [21] and [22]). If the block is valid, then each
full node includes it in its ledger. Note that the mining node
gets a bitcoin reward for generating a block. This reward plays
as a strong incentive for full nodes to conduct mining.

When a light node, for some reason, wants to verify a
transaction, it requests information on transactions from some
neighboring full nodes and further conducts the simplified
payment verification (SPV) protocol, (see [1] for details).

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

7056 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

Remark 1: The authors could not find in the literature an
incentive for a full node to convey this information to the
light node. This is an interesting point since typically all oper-
ations in distributed systems should have incentives. What
would happen, for instance, if the owner of a full node mod-
ifies the Bitcoin software (that runs on this node) so that the
node would stop answering light nodes’ requests? This can be
done, for example, in order to save computational and elec-
trical resources of the node. Since this will not result in any
penalty for this node, many other full nodes may follow the
same “lazy” behavior, which may result in poor blockchain
performance.

The block header of a block contains the following items:
version, timestamp, the hash of previous block header, Merkle
root, current target, and nonce. We briefly discuss these items
as follows.

The “version” field indicates which version of the software
is used, “timestamp” field is the time (in UNIX format) when
a full node starts mining the block, and the hash of previous
block header is the result of hashing output of the previous
block header.

We recall that a hash function maps input data of arbitrary
size into a sequence of fixed length and any change of the
input data will change the output. In Bitcoin, the SHA256
hash function is used, which generates a 256-b output for any
input. The very important feature of a hash function is that it
is very difficult to invert, i.e., to find an input corresponding
to a given output.

In order to produce a block, a full node first selects sev-
eral valid transactions together, then it forms a Merkle tree by
repeatedly hashing pairs of the transactions until there is only
one hash left, which is called the Merkle root. More details
on the Merkle tree can be found in [1] and [23].

“The current target” is a 256-b sequence that is used to
adjust the difficulty of block mining. The lower is the current
target, the more difficult it is to find a nonce for a new block.
The target adjusts every 2016 blocks in order to make sure
that a block is mined in around 10 min.

Finally, a very important component of a block header is the
so-called “nonce,” which is a 32-b sequence whose value is
searched by full nodes. In order to successfully mine a block,
each full node competes for solving a difficult Proof-of-Work
(PoW) problem (1), i.e., searching for a nonce for the block
header, such that the following inequality holds

SHA256(SHA256(block header)) < the current target (1)

where the 80-B block header is a concatenation of fields “ver-
sion” (4 B), hash of previous block header (32 B), Merkle
root (32 B), “timestamp” (4 B), “current target” (4 B) and the
nonce (4 B). Note that once the valid transactions are selected,
the only variable in (1) is the value of “nonce,” which needs
to be searched.

Next, a generated block is comprised of the block header
and the selected transactions and a special coinbase transac-
tion. This transaction is a bitcoin reward for the full node that
produced the block. This reward serves as an incentive for a
full node to conduct the mining.

Once a block is produced, the full node broadcasts it
over the network. When it arrives at a full node, the node
will verify using a predefined set of rules, (see [22] for
details), before adding it to its own blockchain. Note that full
nodes have a strong incentive for conducting the verification.
Indeed, assume that the block was not valid, but a node a
skipped the verification and simply included the block into
its blockchain. However, other nodes make verification, fig-
ure out that block is invalid, and do not include it into their
blockchains. Thus, node a will have a blockchain that is dif-
ferent from blockchains of other nodes and this will preclude
node a from subsequent mining in the future.

It is also worth noting that if two full nodes generate two
blocks A and B at the same time, then some full nodes include
block A on their blockchains while others include block B.
However, as time goes on, only one blockchain containing
either block A or block B will be the longest, which will be
considered as the valid blockchain. If say, block A happened to
belong to the longest blockchain, then the branch that starts
at B becomes an orphan and no more new blocks will be
appended to it.

To summarize, the blocks are linked together to form a
chain secured by the PoW, which assures that large com-
puting resources are invested in building such a chain. Any
attempt to modify anything recorded in the chain would, there-
fore, require even more computing resources than those that
have already been expended. Moreover, only those transac-
tions included in a block and further linked into the longest
blockchain are eventually being recorded in the public ledger.

It is easy to see that the Bitcoin blockchain has a huge
redundancy, since each full node (and there are a large number
of these nodes) keeps the full blockchain, so multiple copies
of the same blockchain are stored. This dramatically increases
the storage cost at the full nodes and limits the large-scale
application of the blockchain. In the following sections, we
develop countermeasures for this storage problem.

III. REDUCTION OF REQUIRED MEMORY AT NODES

A. Distributed Block Encoding and Block Recovering

This section presents the proposed distributed blockchain
coding scheme with generic error correction codes. There are
many different powerful families of codes capable of recover-
ing erasures. In particular, one can use algebraic codes, e.g.,
Bose–Chaudhuri–Hocquenghem (BCH) and Reed–Solomon
codes, convolutional codes, iteratively decodable codes, such
as LDPC and Turbo codes, as well as modern polar codes and
many others. In this article, we first formulate results assuming
generic erasure recoverable codes, followed by the applica-
tion of LDPC codes in full detail. We start by defining some
necessary notations.

First, assume that the total number of nodes in the
blockchain is n and these nodes are labeled with indices
{1, 2, . . . , n}. The indices can be assigned to nodes accord-
ing to their blockchain joining timestamps. We assume that
blocks in the ledger are enumerated by integers, so B(j), j ≥ 1,
is the jth block. We combine each set of t consecutive blocks
into groups Gm = [B((m−1)t+1), . . . , B(mt)], t ≥ 1, where m is

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

WU et al.: DISTRIBUTED ERROR CORRECTION CODING SCHEME FOR LOW STORAGE BLOCKCHAIN SYSTEMS 7057

Fig. 1. Illustration of comprising a group of blocks.

the index of the group. We will say that a linear code over
the finite field Fq that encodes t symbols (φ1, . . . , φt) into N
symbols (v1, . . . , vN) is an [N, t]q code. We will always use
systematic encoding, that is vi = φi for i = 1, . . . , t.

It is well known that the performance of long error cor-
recting codes is better than the performance of short codes.
For this reason, we assume N ≈ n. As we will show in
Section III-C (see Algorithm 2), the complexity of restoring
only one particular block does not depend on N, thus keeping
N large improves the performance and does not increase the
decoding complexity. The encoding complexity grows with N,
but since it is small in any case, the encoding of codes with
large N should not be a problem for practical realizations. Note
that the number of nodes n can change, but it is not mandatory
to keep N = n. If at some moment N < n, then simply some
n−N nodes will not obtain any symbols of a codeword. Other
solutions are also discussed in Section VI-G. If N > n, then
this is also not a problem for our scheme, as we explain this in
the sequel. In the rest of this article, to make the presentation
shorter, we assume that N ≥ n.

We represent each block of Gm by k symbols over Fq. We
assume that k log2(q) is larger or equal to the bit size of any
block. If for some block we need only k′ < k symbols, then for
the k−k′ tail symbols we use zeros. Hence, each Gm contains
exactly kt symbols. This procedure is shown in Fig. 1, in which
the symbols are denoted by aij, 1 ≤ i ≤ k, 1 ≤ j ≤ t. Note
that these symbols of course are different for different groups.
So strictly speaking for group Gm, we had to write aij(m), but
in what follows, in order to make notation short, we drop the
index m.

Next, we arrange these kt symbols of group Gm into a k-by-t
matrix, such that the jth column contains symbols that form
the jth block of Gm, i.e.,

⎡
⎢⎢⎣

a11 a12 . . . a1t

a21 a22 . . . a2t

.

ak1 ak2 . . . akt

⎤
⎥⎥⎦. (2)

Further, we use a systematic encoder of our [N, t]q code to
encode each row in (2). The resulted codewords are rows of
the following matrix:

⎡
⎢⎢⎣

v11 v12 . . . v1t . . . v1n . . . v1N

v21 v22 . . . v2t . . . v2n . . . v2N

. .

vk1 vk2 . . . vkt . . . vkn . . . vkN

⎤
⎥⎥⎦. (3)

Note that for 1 ≤ j ≤ t, column vj is the jth block of
Gm [24]. This encoding step can be implemented either by a
single node or by each full node independently. In the first
case, the node performing the encoding will distribute triplets

Algorithm 1 Recovery of a Group Gm Containing Block B(i)

1: Node j enlarges the set L by randomly adding some nodes
i1, . . . , iu to set L, which are still not in L;

2: Node j requests triplets (via , ia, m), a = 1, . . . , u, from these
nodes and those nodes that are active send their triplets to node j;

3: Node j tries to decode k codewords that form the matrix (3), treat-
ing missing symbols (the symbols kept by nodes that have not
been contacted yet, or symbols of nonactive nodes) as erasures;

4: If all k decodings are successful, then this means that node j has
reconstructed the entire group Gm. If some of the decodings are
not successful then we go to Step 1;

(vj, j, m), 1 ≤ j ≤ n, to the corresponding nodes. In the sec-
ond case, each node, say node j, performs independently the
encoding of vj and keeps the triplet (vj, j, m), and it does not
compute other vi, i �= j. This drastically reduces the required
memory. More details will be elaborated in Sections IV and V.

In a similar way, the aforementioned block encoding algo-
rithm can also be applied for encoding a group of th block
headers. As the size of a block header is smaller than that
of a block, and hence th ≥ t block headers can be put into
group G′m.

Note that with this scheme, a particular node, say node j,
has in its possession only columns vj of (3) (one column for
each group Gm, m ≥ 1). If node j needs block B(i), it can use
the following block recovery method.

First node j computes indices m = �(i/t)	 and r =
i −
(i − 1)/t�t. These indices show that B(i) is contained in
vector vr of group Gm. If r = j, then node j does not have
to do anything else, since it already has in its memory this
vr. If r �= j, then node j broadcasts a request for the triplets
(vr, r, m). If node r is reachable and if node j trusts it, then it
gets the required block B(i) from node r. However, if for some
reason, node r is not active (and so not reachable) or node r
is compromised, then B(i) has to be recovered in another way.
In this situation, the node j forms the set of nodes L = {j} and
conducts Algorithm 1.

Note we are interested in keeping the size of the final set
L being as small as possible, since it means that only a small
number of via will be sent to node j and therefore the network
load will be kept small. More discussions will be given in
Section VI-H.

Example: Fig. 2 depicts the proposed Algorithm 1 with a
simple example. Assume an error correction code with param-
eters [N, t]q = [10, 3]q is utilized and the number of nodes in
the blockchain is n = 10. Moreover, assume that the size of
each block in the blockchain is less than log2 q bits (this may
not hold in real blockchains, but only used for this example),
which implies k = 1, i.e., each block can be represented by
one symbol. Moreover, each group contains t = 3 blocks, and
hence matrices (2) and (3) shrink to row vectors with dimen-
sions of 1 × 3 and 1 × 10, respectively. Let node 4 want to
recover block B(6). So it computes m = �(6/3)	 = 2 and
r = 6− (
(6− 1)/3�)3 = 3 and broadcasts request for vector
v3 from group G2. Let us assume, however, that node 3 is not
active or reliable.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

7058 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

Fig. 2. Illustration of the proposed recovery Algorithm 1, where “x” denotes
an unavailable symbol.

Then, node 4 randomly enlarges the set by adding two
nodes as L = {4} ∪ {8, 2}, and nodes 8 and 2 return the cor-
responding triplets (v8, 8, 2) and (v2, 2, 2) (these triplets are
shown in Fig. 2) to node 4 for assembling V′ (this is shown
in the first rectangle in Fig. 2, where “x” denotes an era-
sure). Subsequently, node 4 tries to decode V′, but it fails to
reconstruct G2.

Next, node 4 enlarges the set L again by contacting other
two nodes, e.g., L = {4} ∪ {8, 2} ∪ {9, 5} and updates V′, as
shown in the second rectangle in Fig. 2. However, node 4 still
fails to decode V′. Subsequently, node 4 continues enlarging
the set L as L = {4}∪ {8, 2}∪ {9, 5}∪ {6, 10}. We assume that
node 6 is not active, and so node 4 gets only triplet (v10, 10, 2).
The updated vector V′ is shown in Fig. 2. This time node 4
successfully recovers the desired group G2. Finally, node 4
extracts v3 from G2.

Note that in Algorithm 1, in order to reconstruct one block,
node j has to reconstruct the entire group Gm that contains
that block, which looks being a waste of network resources.
In the sequel, we take LDPC codes as examples, in order to
illustrate the proposed block encoding and recovery algorithms
in detail. We will show in Section III-C that LDPC codes allow
us to contact only those nodes that with high probability will
allow reconstruction of only the needed block. This drastically

reduces the time and computational complexity needed for the
reconstruction and the network load.

Before ending this section, let us elaborate more on the
needed code parameters. The code rate of an [N, t]q code is
defined as R = t/N. Let us assume that our code can recover a
code vector if at least αt, α > 1, code symbols are not erased.
The value of α depends on the choice of our code. In particular,
one can make α being arbitrarily close to 1 by choosing a
sufficiently long LDPC code. Let us further assume that the
number of nodes and the code length is the same, i.e., n = N,
and that with a high probability not more than the fraction
ε of n nodes are not active. Then, with high probability our
code will recover all k codewords in (3) if N(1− ε) ≥ αt, and
hence the code rate should satisfy R ≤ (1− ε)/α.

To get an idea on reasonable values for k and q, we note
that if the size of a block is in the range [klow, kup] in terms
of symbols over Fq, then it makes sense to take k = kup. It
is well known that the size of any Galois field is a power of
a prime number. For real-life implementation, it is convenient
to use q = 2b, where b is an integer. Below we consider two
examples of Bitcoin and Ethereum blockchains.

It is known that a block size limit of 1 MB in the
Bitcoin system was introduced by Satoshi Nakamoto in 2010.
Currently, a block size limit is upper bounded by 4 MB
with the segregated witness (SegWit) soft fork in the Bitcoin
system [25]. Therefore, we have kup = 4 × 223/b symbols
over F2b for Bitcoin blockchain. In the Ethereum blockchain,
there is no block size limit. By observing the average block
size in Ethereum [26], it can be noted that there is no
block size exceeding 35 KB currently. Consequently, the value
kup = 35 × 213/b symbols over F2b can be utilized in the
Ethereum blockchain. For choosing a meaningful value for q,
we first note that typically the larger is q the better is the code
performance. However, when q is already large, any additional
increase of it hardly improves the code performance. So, we
think that devoting one or two bytes for q is a good choice.
Thus, we take q = 28 or 216. This leads us to k = 4× 220 or
4× 219 for Bitcoin and k = 35× 210 or 35× 29 for Ethereum
blockchains.

Additionally, we would also like to point out that the use
of LDPC codes allows us to find the best tradeoff between
the size q of Galois field and the number k of codewords
that are used to encode one group of blocks, for the purpose
of minimizing the overall complexity. This is based on the
following observation.

Assume we have two LDPC codes defined by the same
parity-check matrix H (i.e., by the same Tanner graph), one
is a binary LDPC code C1 while the other one is an LDPC
code C2 over Fq. It is known that the decoding performance of
C2 would beat C1, if we use maximum likelihood decoding.
However, if the message passing decoding algorithm is uti-
lized for an erasure channel, which is the case in the proposed
blockchain coding scenario, then this decoder has identical
performance to the so-called peeling decoder [27]. Therefore,
the probability of decoding error does not depend on the alpha-
bet size q of a Galois field, and thus the codes C1 and C2 will
have the same error correcting performance. As a consequence,
if we choose q being small then k grows and vice versa. Thus,

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

WU et al.: DISTRIBUTED ERROR CORRECTION CODING SCHEME FOR LOW STORAGE BLOCKCHAIN SYSTEMS 7059

Fig. 3. Tanner graph representation of the parity-check matrix in (4).

one can find an optimal tradeoff between the values of q and k
for minimization of the decoding complexity, which depends
on both of these parameters.

B. Preliminary on LDPC Codes

This section gives a brief introduction to LDPC codes and
their application in the proposed blockchain encoding. An
algorithm of recovering an individual block is provided in
Section III-C.

An [N, t]q LDPC code is defined by an (N − t) × N low-
density parity-check matrix H ∈ F

(N−t)×N
q . A vector c ∈ F

N
q , is

a codeword if and only if Hc = 0. It is convenient to associate
with H a bipartite graph consisting of a set of N variable nodes
and N− t check nodes. Variable nodes are connected by edges
with check nodes. Each column of H corresponds to a variable
node and each row in H corresponds to a check node. If the
entry hij �= 0, then the jth variable node is connected to the
ith check node by an edge and that edge has label hij.

The weight of a column (row) in H is defined as the number
of nonzero elements in the column (row). An LDPC code is
said to be (dv, dc) regular if the weights of all columns and
the weights of all rows are dv and dc, respectively.

An example of a 4×8 parity-check matrix H over the finite
field F4 of a code with R = 1/2 is given in (4). The finite
field F4 consists of elements {0, 1,�, �̄}, and summation and
multiplication rules for those elements (see [28] for details on
finite fields).

It can be noted that the weight of each column is 2 while
the weight of each row is 4, and thus this is (2, 4) regular
code.

H =

⎡
⎢⎢⎣

0 � 0 � � 0 0 �

� �̄ � 0 0 �̄ 0 0
0 0 �̄ 0 0 � �̄ �̄

�̄ 0 0 �̄ �̄ 0 � 0

⎤
⎥⎥⎦. (4)

The matrix in (4) can also be represented by a Tanner
graph. Fig. 3 shows the Tanner graph corresponding to (4),
where squares denote the check nodes and circles represent
the variable nodes.

The Tanner graph can be used for iterative decoding
algorithms, such as belief propagation or message passing
decoding. These algorithms have low complexity, typically
O(N log N), and provide low decoding error probability,
(see [29] for decoding algorithms). Additionally, more
information regarding the designs and applications of LDPC
codes can be found in [30]–[32] and references therein.

It is important to note that irregular LDPC codes are much
more efficient than the regular LDPC codes. An irregular
LDPC codes has various column or row weights in the parity-
check matrix H, and it is defined by the degree distributions
λ(x) and ρ(x)

λ(x) =
dv∑

i=2

λix
i−1, ρ(x) =

dc∑
i=2

ρix
i−1

where λi (respectively ρi) denotes the fraction of the edges
incident to variable (respectively check) nodes of degree i.
For instance, the (2, 4) regular LDPC code in (4) can also be
represented by λ(x) = x and ρ(x) = x3.

An important subclass of irregular LDPC codes is formed by
protograph-based LDPC codes. A protograph BH is a Tanner
graph with a relatively small number of variable nodes and
check nodes, and the parity-check matrix H of the final LDPC
code is constructed from BH in a “copy-and-permute” way.
First, BH is copied l times and then the edges of each copy
are permuted among all the l copies. More information about
protograph-based LDPC codes can be found in [32] and ref-
erences therein, and the simulation results will be given in
Section VI-H.

As we noticed already in Section III-A, a properly designed
LDPC code can recover all t information symbols if αt code
symbols are not erased. In particular, an optimized choice of
λ(x) = x and ρ(x) = x3 leads to LDPC codes with α → 1
as the code length N tends to infinity, (see [31], [33]). So for
recovering all blocks of a group Gm, a particular node, say
node c, should contact arbitrary set of αt nodes and collect
their triplets (vj, j, m). Next, node c forms k vectors, say yi, i =
1, . . . , k, using the obtained symbols vij, i = 1, . . . , k, and
using erasures x for missing symbols and decodes vectors yi

by an iterative decoding of the LDPC code. If decodings of yi

are unsuccessful, node c will request some additional triplets
(vj, j, m) from nodes that have not been contacted yet.

It is interesting to note that since erasures x in vectors yi

appear on exactly the same positions, one can show (we omit
details) that either all k decodings will be successful or they
all will fail. Hence, node c may first conduct decoding of only
y1 and conduct other k− 1 decodings only if it is successful.
This will greatly reduce the computational complexity.

C. Block Encoding and Individual Block Recovering

Often a node does not need all t blocks from a group Gm.
Instead it may need block B(a) from Gr and block B(j) from
Gm, and so on. So, it looks natural to try to find a decoding
approach for this task that would have significantly smaller
complexity than the decoding of an entire group Gm. Below
we present such an approach in the case of LDPC codes.

Using Gaussian elimination and column permutation one
can transform matrix H to the systematic form H′ = [PT IN−t]
and further find a generator matrix of this LDPC code in
the systematic form G = [It P]. The generator matrix
G allows one to conduct a systematic encoding of vector
ai = [ai1, . . . , ait], i = 1, . . . , k, as

(vi1, . . . , viN) = aiG, i = 1, . . . , k. (5)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

7060 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

Fig. 4. Expanded Tanner graph for a (dv, dc) regular LDPC, in terms of one
coded symbol.

These vectors are the rows of matrix (3). If the encoding is
conducted by each full node independently from others, node
j simply computes vj = aigj, where gj is the jth column of G.

As we discussed in Section III-A, recovering a single block
is equivalent to recovering the appropriate column in (3).

Recall that an LDPC code can be represented by a Tanner
graph, and let us consider a (dv, dc) regular LDPC code. Let
us take the jth variable node and set L0 = {j} (we will say
that L0 is the 0th extension layer). We will use this variable
node as a root to expand the graph as follows. First, we follow
the edges that are incident to this variable node and come to
dv check nodes and use their indices to form extension layer
L1. Next, we follow the edges that are incident to the check
nodes from L1, excluding the edges coming from layer L0, and
come to dv(dc−1) variable nodes and include their indices into
extension layer L1. We proceed in this way further and form
layers L2, L3, and so on. This procedure is shown in Fig. 4. It
is not difficult to show that the number of check nodes Nc(r)
and variable nodes Nv(r) in Lr are

Nc(r) = dv(dc − 1)r−1(dv − 1)r−1 (6)

Nv(r) = dv(dc − 1)r(dv − 1)r−1. (7)

Recall that a cycle in the bipartite graph is a path that starts
and finishes at the same variable node. The length of a cycle is
equal to the number of the involved edges. Good LDPC codes
do not have short cycles. It is easy to see that if our LDPC
code does not have cycles of length 2r, then all variable nodes
from layers L0, L1, . . . , Lr are distinct.

Let us assume that node c needs to recover the
((m− 1)t+ j)th block, that is the jth block in Gm. Recall that
this is equivalent to recovering symbols vij, 1 ≤ i ≤ k in

Algorithm 2 Recovery of Symbols v1j

1: Node c expands the Tanner graph using L0 = {j};
2: Node c broadcasts request for v1j;
3: if Node j is accessible then
4: Node c gets v1j;
5: Return;
6: else
7: Node c sets the counter r = 0;
8: while The value v1j is not recovered do
9: Node c sets r ← r + 1 and broadcasts requests for

the symbols v1u with u ∈ Lr;
10: Node c gets symbols v1u only for those u ∈ Lr that

are accessible (perhaps not all nodes from Lr);
11: Node c uses the received v1u to form set Sr;
12: Node c uses symbols from S1, . . . , Sr as input for

the Single Symbol Decoding Algorithm defined in
Algorithm 3;

13: if The value v1j is reconstructed then
14: Break;
15: end if
16: end while
17: end if

matrix (3). In Algorithm 2, we consider how this can be done
for i = 1. For all other i’s, the algorithm is exactly the same.

Below we present an algorithm of recovering only a single
coded symbol which corresponds to recovering one block from
a group Gm. This single symbol decoding algorithm is similar
to the standard erasure decoder of LDPC codes [27]. However,
it has a smaller complexity. Since this algorithm is important
for blockchain applications, we present it in detail. We will
use Fig. 4 to give the following informal description of it.

We will say that dc − 1 edges on the right-hand side of a
check node of degree dc are inputs and the single edge on its
left-hand side is the output. We will use similar terminology
for variable nodes. We further assume that all the variable and
check nodes are enumerated and that the jth variable node
corresponds to the jth column of H and the ith check node
corresponds to the ith row of H. The single symbol decoding
algorithm is described in Algorithm 3.

Note that the complexity of this decoding is small if r is
small. The complexity does not exceed

C(r) =
r∑

j=1

Nc(r)(dc − 2) (8)

summations over Fq, where Nc(r) is defined in (7).
Additionally, we also need dv multiplications at each check
node of degree dc and one multiplication at each variable node.
If we assume that the exponential form of elements of GF(q)

is used, then multiplications have very low complexity. Hence,
in what follows we will count only summations.

Note that with the help of the special format in (3), when
node c requests the symbols in set Lr+1, the corresponding
nodes can send the entire column containing the requested
symbols [recall that each node stores one column of the matrix
in (3)]. In such a way, the desired block can be recovered by

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

WU et al.: DISTRIBUTED ERROR CORRECTION CODING SCHEME FOR LOW STORAGE BLOCKCHAIN SYSTEMS 7061

Algorithm 3 Single symbol decoding algorithm
1: INPUT: S1, . . . , Sr;
2: for Layer Lr Down to L1 do
3: Node c uses symbols from Sr, the other symbols cor-

responding to non-active blockchain nodes are replaced
with erasure x;

4: for Each check node i do
5: Denote by ci,1, . . . , ci,dc−1 and by ci,dc the nonzero

entries of the i-th row of H corresponding to the
inputs of the node, and the output of the node
respectively;

6: if All dc− 1 inputs, say v1, . . . , vdc−1, of this check
node are not erasures then

7: Compute the output as w = (
∑dc−1

t=1 ci,tvt)/ci,dc ;
8: else
9: Set w = x;

10: end if
11: end for
12: for Each variable node j do
13: Denote by cj,1, . . . , cj,dv−1 and by cj,dv the nonzero

entries of the j-th column of H corresponding to
the inputs of the node, and the output of the node
respectively;

14: if At least one input, say wt, of the dv − 1 inputs,
w1, . . . , wdv−1, is not erased then

15: Set the output as v = wt/cj,t;
/* it is not difficult to show that all non erased
input symbols always have the same value */

16: else
17: Set v = x;
18: end if
19: end for
20: end for

contacting a small number of nodes but performing the LDPC
decoding algorithm k times.

Similar to the algorithm of reconstructing the whole group
of blocks, we are interested in maintaining the value of r as
small as possible. In other words, expand as less as possible the
layers of the Tanner graph for a given root, since this is equiva-
lent to keeping low network load. The following lemma shows
how many nodes we typically have to connect and how much
computations we have to do in order to recover an individual
block.

Lemma 1: We assume that all blockchain nodes have the
same level of unavailability and that the nodes are independent.
If a given (dv, dc) regular LDPC code does not have cycles
of length less than or equal to r, and if the probability of a
blockchain node being unaccessible is ε, then the probability
that we will need to contact more than Nr = 1+∑r

y=1 dv(dv−
1)y−1(dc − 1)y nodes can be expressed recursively as

P(0) = ε, P(r) = ε

(
1−

(
1− P̂(r−1)

)dc−1
)dv

, r ≥ 1 (9)

where

P̂(0) = ε, P̂(r) = ε

(
1−

(
1− P̂(r−1)

)dc−1
)dv−1

, r ≥ 1.

The expected number Enodes of nodes that should be contacted
and the expected number of needed summations Ecmplxt are

Enodes = 1− ε +∑∞
r=2

(
P(r−1) − P(r)

)
Nr,

Ecmplxt =∑∞
r=2

(
P(r−1) − P(r)

)
C(r)

where C(r) is defined in (8).
Proof: According to the check and variable nodes pro-

cessing described in Algorithm 3, we have that if p is the
probability of erasure at the input of check (variable) node
then

Pr(erasure at the output of check node) = 1− (1− p)dc−1

(10)

Pr(erasure at the output of variable node) = pdv−1.

(11)

For the root node, which has dv inputs, we have

Pr(erasure at the output of variable node) = pdv . (12)

The probability of erasure of the root is ε, hence we have
P(0) = ε. If we start with L1, then according to (12) and (10),
we have P(1) = ε(1− (1− ε)dc−1)dv−1. Here ε can be thought
of as the probability of erasure at the output of a variable node
of L1. Hence, we have

P(1) = ε

(
1−

(
1− P̂(0)

)dc−1
)dv

.

Next, if we start with L2, then for the same reasons

P(2) = ε

(
1−

(
1− P̂(1)

)dc−1
)dv

where P̂(1) is the probability of erasure at the output of a
variable node of L1. Using (10) and (11), we get that this
probability is

P̂(1) = ε
(

1−(1−ε)dc−1
)dv−1 = ε

(
1−

(
1− P̂(0)

)dc−1
)dv−1

.

Assuming further, in the same way, that we start with layers
L3, L4, and so on, we obtain (9).

Using (9), we get that

Q(r) = Pr(we have to start decoding from Lr)

= P(r) − P(r+1).

The probability that the root is not erased itself is 1−ε. These
facts lead to the expression for Enodes. Arguments for Ecmplxt

are similar.
Example: The above lemma can be interpreted as the fact

that with high probability, the desired symbol can be recov-
ered by contacting a small number of auxiliary nodes in the
blockchain. Table I shows the probability that we need to
contact more than r layers (i.e., more than Nr nodes) for recov-
ering a given symbol in the case of a regular (3, 4) LDPC code
for different values of ε. In particular, if ε = 0.2, then the prob-
ability that node c will need to contact more than N2 = 64
nodes is 5.05×10−4. Note that the value ε = 0.2 is equivalent
to saying that 20% nodes in the network are not accessible,
which is a very large fraction. In real life, we expect that ε

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

7062 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

TABLE I
PROBABILITY THAT WE NEED TO REQUEST MORE THAN r LAYERS, I.E., REQUESTING DATA FROM MORE THAN Nr NODES,

FOR SUCCESSFULLY RECOVERING A DESIRED SYMBOL, USING A (3, 4) REGULAR LDPC CODE

TABLE II
EXPECTED NUMBER OF NODES THAT SHOULD BE CONTACTED IN ORDER

TO RECOVER A PARTICULAR BLOCK B(j) AND THE EXPECTED

NUMBER OF SUMMATIONS OVER Fq NEEDED FOR THIS

RECOVERY IN THE CASE OF A (3, 4)

REGULAR LDPC CODE

will be significantly smaller. For instance, when ε = 0.01, the
probability that node c will need to contact more than N1 = 10
nodes is only 2.62× 10−7.

Furthermore, Table II shows the expected number of aux-
iliary nodes and the expected number of needed summations
for different values of ε. One can see that on average those
numbers are quite small. As we wrote in Section I, this was
one of the main goals addressed in this article.

More numerical results can be found in Section VI-H.

IV. PROPOSED BLOCKCHAIN WITH FULL NODES

This section addresses the application of the proposed
blockchain encoding scheme into the current blockchain
systems. Specifically, full node j can perform the proposed dis-
tributed coding scheme and keeps only symbols vij, 1 ≤ i ≤ k,
instead of storing all blocks of the corresponding group Gm.

We assume that each full node is equipped with an encoder
and decoder of the selected [N, t]q LDPC, and hence it is
capable to generate the required parity-check and generator
matrices H and G. We also assume that there is a mechanism
for assigning an index j, 1 ≤ j ≤ n to each full node according
to its timestamps of joining the blockchain.

Similar to the standard Bitcoin blockchain, we assume
that each block is broadcasted over the entire blockchain.
Suppose that at some moment group Gm−1 is encoded,
as it was described in the previous sections, and blocks
B((m−1)t+1), B((m−1)t+2), . . ., are continued being generated
and broadcasted to all full nodes. Each full node keeps all
those blocks in its memory. At some moment, a full node,
say node c, generates and broadcasts block B(mt). At this
moment, all full nodes receiving this block realize that it
is time to perform the encoding algorithm for group Gm.
Hence, each full node individually conducts the encoding, and
keeps only one triplet (vj, j, m) and further gets rid of blocks
B((m−1)t+1), . . . , B((m−1)t+t). Moreover, a group of th block
headers can be encoded and distributed in the same way.

In real life, some delays with block propagation to differ-
ent nodes are possible. For this reason, to ensure the same
enumeration of blocks in blockchains of different nodes, the
above protocol can be shifted back in time. For instance, we
can start to perform the encoding algorithm for group Gm only
when block B((m+1)t) is generated (not B(mt)). This delay will
ensure that all nodes keep blocks B((m−1)t+1), . . . , B(mt) in the
same place of their blockchains.

Each full node also stores the hashes of block headers, i.e.,
h(i) = hash(H(i)), where H(i) is the header of block B(i). The
verification rules of a new block can be found in [22], includ-
ing one important step of checking if there exists a duplicate
of new block B(i). By keeping all the hashes of previous block
headers, i.e., h(j), j < i, the above checking procedure can be
done by detecting if any value of h(t), t < i equals to the value
of h(i). If h(t) �= h(i) ∀t < i, then it is believed that there is no
duplicate of block B(i). However, if it happens that h(d) = h(i),
for some d, d < i, then block B(d) needs to be recovered using
Algorithm 2 in Section III-C, in order to compare the detailed
contents of B(d) and B(i).

Note that in Bitcoin-type blockchain systems, the unspent
transaction output (UTXO) model is utilized, and the verifica-
tion of a specific transaction involves multiple blocks. To do
so, one has to recover all the relevant blocks. It is worth not-
ing that only small expected numbers of auxiliary nodes and
summation operations are required to recover a single symbol,
as shown in Table II. A fact implies that the extra complexity
of recovering an individual block is small. On the other hand,
using the proposed block encoding and recovery algorithms,
this extra complexity exchanges a considerable reduction of
nodes’ storage requirements. This article presents a tradeoff
between the coding complexity and storage complexity, and
more efficient encoding and recovery algorithms are to be
investigated.

For a blockchain with all light nodes, considered in the
following section, we propose to use the account-balance table.
The use of this table allows simple transaction verification
without checking all the previous transactions of a particular
node.

V. PROPOSED BLOCKCHAIN WITH ALL LIGHT NODES

This section investigates a novel blockchain system that
consists of only light nodes, utilizing the account-based
blockchain model. We assume that each node simply maintains
an account-balance table. If some node, say node c, gener-
ates and signs a transaction that involves the transfer of b
bitcoins (or simply coins, if this is not Bitcoin blockchain)
to node d, then at the moment of including this transaction

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

WU et al.: DISTRIBUTED ERROR CORRECTION CODING SCHEME FOR LOW STORAGE BLOCKCHAIN SYSTEMS 7063

into a block, blockchain nodes check that the cth entry of the
account-balance table is larger or equal to b. If this is not the
case, such a transaction will be considered as invalid and not
allowed for including into a block.

Another assumption of this blockchain is that a communi-
cation link between any two nodes can be established. Similar
to the previous sections, we assume that all the nodes are
labeled with increasing indices 1, 2, . . . , n, in terms of their
blockchain joining timestamps.

A. System Description

Assume that a node a generates a block B(i) at some time,
((m − 1)t + 1) ≤ i < mt, and keeps B(i) in its memory.
Node a further sends B(i) only to M verification nodes (a
way for choosing such nodes is presented in Section V-B).
At the same time, the block header H(i) will be broadcasted to
the entire network, that is, to all n nodes. Each node, across the
blockchain, waits for the verification results from M verifi-
cation nodes and determines whether the block header H(i)

should be accepted or not. If H(i) is accepted, then only its
hash h(i) is kept at each node. The same procedure will be
repeated until the production of the block B(mt).

At some moment a node, say node c, mines the block
B(mt). If this block is approved by M verification nodes, then
node c assembles a group of t blocks B((m−1)t+1), . . . , B(mt) by
requesting the previous (t− 1) blocks from the corresponding
miners. Next, node c performs the encoding algorithm using
LDPC codes, as described in Sections III-A and III-B. Finally,
the mining node c sends triplets (vj, j, m), j = 1, . . . , n, to the
corresponding nodes j. If some nodes are offline, then the cor-
responding triplets will be lost. After distributing all the coded
triplets, blocks B(i), ((m−1)t+1) ≤ i ≤ mt, will be removed
from their corresponding miners.

Additionally, node c will also be responsible for encoding a
group of th block headers. For easy implementation, one may
enforce th = t, i.e., the block encoding and the block header
encoding procedures will be conducted at the same pace.

Finally, note that in the proposed scheme, only the miner
keeps the block until it is involved in the block coding proce-
dure. In case the miner leaves the blockchain network in the
duration, we propose to use the following strategy. The scheme
will require M verification nodes to keep copies of the block
that they verified. If the miner leaves the network, then one
of the M verifiers will take its role to conduct encoding. In
particular, it is natural to assume that the representative of M
verification nodes (discussed later in Section V-B3) can take
this role.

We point out that the coding procedure differs from that for
the blockchain with full nodes in the following aspects: 1) only
one miner conducts the encoding scheme and 2) only the
block header instead of the entire block is broadcasted over the
network. It can be noted that for the all-light-node blockchain,
the coding scheme is tailored to reduce the network communi-
cation cost and the number of nodes conducting the encoding
scheme, while still maintaining the blockchain feasibility. It is
also important to remind that erasure correcting codes, in par-
ticular, LDPC are vitally important in a blockchain with only

light nodes since light nodes do not have enough memory
for storing the entire ledger. An erasure code (in particular
an LDPC code) allows one to drastically reduce the needed
memory of light nodes.

B. Block Verification Algorithm With M Nodes

In the currently used blockchain systems, every full node
has to verify a newly mined block, which is very computa-
tionally consuming and requires large network load, since the
block should be broadcasted to all full nodes, whose number
could be very large. In this section, we present a novel block
verification algorithm that employs only M verification nodes,
which greatly reduces the network load.

1) Verification Criteria: As we indicated at the beginning
of Section V, we assume that nodes maintain the account-
balance table, which consists of the public keys of nodes and
their current balances. This table allows a node to check the
validity of a transaction. A big advantage of such a table is
that its size does not grow with time, but depends only on the
number of nodes in the blockchain, which typically does not
actively grow. As a result, the entire table can be kept in the
memory of small devices such as cell phones.

It is not clear at this moment, whether this table would be
sufficient for running smart contracts and other advanced func-
tions. We leave this question for future research. Therefore, in
this article, we assume only transaction-oriented blockchains,
such as Bitcoin for example. For these types of blockchain,
possession of the account-balance table should be enough for
checking the validity of transactions.

This table allows checking a transaction according to the
following two criteria.

1) The transaction is signed correctly by the sender.
2) The sender’s account has sufficient balance for the

transaction.
Furthermore, the block verification can be completed by any
node with low complexity, by checking the following items.

1) Check if a duplicate of this block already exists.
2) Check if the PoW is correct.
3) Check if each transaction is valid.
In order to conduct item 1), a node compares the value of

hash h(i) of header H(i) with hashes h(t) of H(t), t < i, and if
necessary compares corresponding blocks in the same way as
it was described at the end of Section IV.

2) Fake Transactions Insertion: We believe that any proto-
col in a decentralized blockchain must have an incentive. We
discussed in Section II the incentive for full nodes to conduct
verification of newly mined blocks. We also pointed out there
is a problem with identifying an incentive for a full node to
share information with light nodes, which potentially can be a
problem. For this reason, we would like to create an incentive
for each of M verification nodes to conduct honest verification
instead of simply saying that a newly mined block is valid.

The block verification procedure is very simple and cheap,
and for this reason, even a small verification reward should
be good enough as an incentive. We propose to organize such
kind of incentive below.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

7064 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

We propose that the miner randomly inserts a predefined
number w of fake transactions into the block that it is going
to mine. The purpose of these w fake transactions is to give
other nodes a tool to detect whether a particular verification
node indeed conducted verification. In order to do this, the
miner may copy some transactions from those that are not
included in a block and make any change on their addresses.
Therefore, the fake transactions will not be validated, and fur-
ther has no impact on the account-balance table. Note that
w fake transactions will not be included for computing the
Merkle root in the block header. Furthermore, the miner cre-
ates a binary sequence s0 in which 1’s correspond to valid
transactions and 0’s to fake transactions. Finally, the miner
computes and broadcasts the hash

h0 = hash(s0). (13)

Each verification node, say node j, is supposed to verify all
transactions and create a binary sequence sj whose entry indi-
cates which transactions are valid and which are not. The
verification node is also supposed to compute hj = hash(sj).
Without looking into the details of transactions, node j is not
capable to create sj and hj so that sj = s0 and further hj = h0.
In addition, the verification node makes other checks, namely:

1) the solution to the required PoW is correct;
2) there is no previous block duplicating the current block;
3) the number of invalid transactions is the same as w and

all the other transactions are all valid;
4) h0 = hj;
5) the account-balance update information is correct.
The reason for 3) and 4) is the following. It is known that

mining takes a lot of computational resources, and hence a
miner wants to produce a correct block (in order to get min-
ing reward), since otherwise it will be rejected by other nodes.
Therefore, it is reasonable for a miner to give a correct value of
w. Furthermore, if the number of invalid transactions is larger
than w (implies some extra transactions are wrong), then the
block is invalid. Moreover, if the number of invalid transac-
tions is less than w, then perhaps the miner is lying. Finally, if
the number of invalid transactions match the value of w, then
item 4) guarantees the correct order of w fake transactions
in sj.

Finally, after all these checks, verification node j makes a
decision uj = 1, 0 whether the block is valid or not.

Note that by comparing h0 and hj, any other node can
check whether node j indeed conducted verification or not, and
according to this checking, it can decide whether to assign a
reward to node j or not (see details on this below).

3) M Verification Nodes Selection: The PoW protocol is
widely used in many blockchain systems for several reasons.
In particular, it is used in order to prevent cyber attacks such
as a denial-of-service attack. The PoW in most blockchain
systems is based on searching for a nonce, say β, that leads
to a hash value that satisfies certain inequality, (see Section II).

We propose that miner uses β as a seed of a random integer
generator, which randomly outputs γ M node indices, where γ

is a small integer, like γ = 5. Let those indices form a set
V, |V| = γ M. The number of verification nodes can be chosen
according to the expected fraction of malicious nodes. The

larger number of such nodes is expected, the larger should be
M (see the end of this Section V-B on choosing M). For the
moment, we assume that M = 99.

Next, the miner broadcasts β to all nodes. We specified
in Section V-A that the miner broadcasts the header of the
mined block. Hence, each node can check whether the broad-
casted β is valid and that it satisfies the PoW. If β is correct,
each node uses it to generate the same set V(β) of verifica-
tion nodes as the set V used by the miner. Note that finding
another nonce, say β ′, for a given block, is a time and compu-
tationally consuming task. Therefore, a dishonest miner will
be able to generate only a small number nβ of nonces for
a given block. It is reasonable to assume that nβ = 1, 2, or
maybe 3. The generation of additional nonces does not help
much to a dishonest miner. Indeed, if the miner uses any of
those nonces, say nonce β ′, then it will get another list V(β ′)
of γ M random nodes. However, these verification nodes are
still random and they are not chosen according to the prefer-
ences of the miner. Hence, it is not difficult to see that the
probability pwrong of wrong majority voting decision, defined
in (18) in Section V-B, will be at maximum nβpwrong. Since
pwrong is typically very small, the factor nβ will not play a
significant role.

Let us now assume that a dishonest miner broadcasts a
nonce β, but uses a list Ṽ comprised of verifiers that are
controlled by itself. In this case, since V(β) �= Ṽ , all the
network nodes will reveal this and will not accept this block
(see Section V-B6 for details).

Next, the miner sends a random number α to nodes from
V and asks them to solve a small PoW, i.e., find a value Q
satisfying

hash(α, the node’s public key, Q) < threshold. (14)

We recall that the attacker in a Sybil attack forges a large
number of pseudonymous nodes and utilizes them to make a
disproportionately large influence. If some node uses such a
Sybil attack, then it can be capable of inserting many of those
pseudonymous nodes into set V . However, since we require
that each node from V solves a small PoW, this approach
becomes very expensive for an attacker since it will have to
spend too many resources for solving multiple PoWs (14).
Thus, this prevents the event that many nodes from V are
controlled by one user.

Each node has the incentive to get the verification reward,
so we can expect that many nodes from V will try to solve the
assigned PoW and send their solutions to the miner. Let such
nodes form set V ′ ⊂ V . Next, among nodes from V ′, the miner
selects the first M verification nodes who sends back the cor-
rect solution for PoW (14), which will form set V,′′ |V ′′| = M.
The miner further assigns the node, say jrep with the smallest
index among nodes from V ′′ as the representative of V ′′.

We note again that by doing this, the miner makes sure that
M verification nodes are online and the Sybil attack is unlikely.
If the number of nodes who reply to the miner is less than M,
then the value of multiplier γ needs to be increased.

4) Block Distribution: We denote by Tm−1 the account-
balance table that was created during generation of
group Gm−1.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

WU et al.: DISTRIBUTED ERROR CORRECTION CODING SCHEME FOR LOW STORAGE BLOCKCHAIN SYSTEMS 7065

The miner sends the full block, e.g., B(i), only to M selected
verification nodes from V ′′. Additionally, the miner also broad-
casts the indices of nodes from V ′′, h0, the block header H(i),
and the difference
m between its current table Tm and Tm−1.
The purpose of this is that all nodes can create the same table
Tm, using
m and Tm−1 that is the same at all nodes. This
ensures that when the verification nodes check transactions
from B(i), they use the same balance table Tm.

Each node outside of V ′′ will wait for the vote vector
(described below) from the representative node jrep for further
process.

5) Verification Protocol Using the Byzantine Fault
Tolerance Algorithm: The Byzantine type consensus algo-
rithms find numerous applications within the blockchain
technology, (see [34]–[36] and references therein). In particu-
lar, Das et al. [34] proposed new and nontrivial modifications
of the Byzantine consensus algorithms for blockchains that
run computationally intensive contracts. In this article, we
use a relatively simple algorithm described in [20].

Recall that the BFT algorithm [20] considers the scenario
in which M participants possess individual messages aj, j =
1, . . . , M (for instance aj = 0, 1) and send each other messages
bj. It is assumed that a receiver always knows from whom it
receives a particular message. The messages bj can be of the
form “participant j has data cj,” or “participant j received from
participant i message ei.” It is shown in [20] and in a number
of other papers that, if there are more than 2M/3 active and
honest participants (who always send only true messages), then
after
(M− 1)/3�+ 1 rounds,1 all the honest participants will
possess the same vector (f1, . . . , fM) and fj = aj.

In our scheme, each node from V ′′ form message aj in the
following way. If node j is honest and B(i) is valid, then

aj =
(
sj, uj, j, signature of node j

)
. (15)

If node j is honest, but B(i) is invalid, then

aj =
(
reason why block is invalid, uj,

j, signature of node j). (16)

Note that node j picks up a reason why block is invalid from
a predefined sets of such reasons. For instance, such set can
contain reasons: the number of invalid transactions is larger
than w, or this block is a copy of a previous block.

Next, the nodes run the BFT algorithm, and after
(M −
1)/3� + 1 rounds, each honest verification node possesses the
same vote vector, i.e.,

f = (f1, f2, . . . , fM) (17)

with fj = aj. Finally, the representative node jrep will simply
broadcast the vote vector f. Note that each vote fj is signed by
node j and thus the representative node cannot modify it.

6) Validity Decision of Block: Now each node in the
blockchain receives the following items: the block header H(i)

and account-balance update information
m from the miner,
the hash value h0 from the miner, and the vote vector f from
the representative verification node. Subsequently, each node
will check the following items.

1It is shown in [20, Section 3] that in a general case, when m out of n
nodes are dishonest and n ≥ 3m+ 1, m+ 1 rounds are enough for achieving
a consensus.

1) The index j of the verifier belongs to set V .
2) The signature of each vote in vector f is correct.
3) The number of zeros in sj is w.
4) hj = h0.
5) The decision uj from node j is 1 (valid) or 0 (invalid).
Note that if the item 1) is violated, then each node could

broadcast a warning message so that most honest nodes will
not accept the block. Otherwise, each node makes a decision
on the validity of the block B(i) by applying the majority vote
rule into the vote vector f.

If the block is valid, then each node accepts the block
header H(i) and computes the new account-balance table Tm

using Tm−1 and
m. Furthermore, M verification nodes are
divided into two sets by each node. The first set V1 consists
of those verification nodes whose votes are the same as the
final decision, while the second set V0 contains the remain-
ing verification nodes. Finally, only verification nodes from V1
will be awarded.

If the block is invalid, then the block header and the
account-balance update information
m will be rejected. In
this case, the nodes from V1 will still be rewarded, as they
discovered the invalidity of the block.

It is important that the verification nodes from V0 will get
no reward (disregarding whether the block is accepted or not),
since they did not conduct proper block verification. This
creates an incentive to conduct verification properly.

The reward for the nodes from V1 can be implemented
with the following two approaches. In the first approach,
the next mining node, say node d, should create reward
transactions for these verification nodes and broadcast them.
Each reward transaction transfers some coins, for example,
“current mining reward/(10M),” from d to the nodes in V1,
where “current mining reward” is the mining reward for
the new miner. In the second approach, node d will cre-
ate reward transactions with “current mining reward/(10M)”
coins from the air, such as coinbase transactions for min-
ing reward in Bitcoin-type blockchains, and further broadcasts
them. The only difference between the above two schemes is
that whether verification nodes are paid by the new miner or by
the system.

Next, if verification nodes that check the block mined by d
see that not all the nodes from V1 have been awarded, then
they will not validate the new block and node d will not get
its mining reward.

Finally, it is important to choose M so that the probability
of making a wrong decision on a newly mined block is small,
even if there are b dishonest nodes in the blockchain. Assume
M + 1 can be divided by 3. Then, the Byzantine-based deci-
sion will be wrong if M′ > (M + 1)/3 verification nodes are
dishonest and all of them make the same decision. The last
assumption is not very likely since this means that all M′ ran-
domly chosen dishonest nodes should have a common control,
which is hardly true in real life. Still we make this worst sce-
nario assumption. Under those assumptions, the probability of
wrong majority voting decision is

pwrong =
M∑

M′=(M+1)/3

(
n− b

M −M′

)(
b

M′

)
/

(
n

M

)
. (18)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

7066 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

Algorithm 4 Block Verification Algorithm With M Verifiers
1: for Each node that mines a new block do
2: Insert randomly w fake transactions, compute h0

using (13);
3: Generate γ M randomly selected indexes, using nonce

β as the seed of a random numbers generator;
4: Send a random number α to the γ M selected nodes and

ask them to solve the PoW (14);
5: Appoint M verification nodes from those nodes who

firstly send back the solutions of (14), and designate
one of them as a representative;

6: Broadcast the nonce β;
7: Broadcast block header H(i), the account-balance update

information and h0 across the network;
8: Send the full block B(i) to the M verification nodes;
9: end for

10: for The M verification nodes do
11: Each verification node checks the block independently

and generates message aj according to (15) or (16);
12: Run the Byzantine fault tolerance algorithm;
13: end for
14: The vector f defined in (17) is broadcasted by the repre-

sentative of M verification nodes;
15: for Each node in the blockchain do
16: if The index j of the verifier does not belong to set V

then
17: Reject the block header and the account-balance

update information;
18: Broadcast a warning message that the verifier j is

illegal;
19: else
20: if The majority in the vote vector f is positive then
21: Accept the block header and update the account-

balance table;
22: Create reward transactions for the verification

nodes who vote positive;
23: else
24: Reject the block header and the account-balance

update information;
25: Create reward transactions for the verification

nodes who vote negative;
26: end if
27: end if
28: end for

This expression can be used for choosing an appropriate
M. For example, if n = 1000 and b = n/100, then it is
enough to choose M ≥ 32 to get pwrong = 0. Similarly,
for b = n/50, it is enough to choose M ≥ 62 to get
pwrong = 0, while for b = n/20, it is enough to choose
M ≥ 152 to get pwrong = 0. This probability can be con-
sidered as virtually zero probability (the chance that some
other terrible event would happen in this world is significantly
higher).

Finally, the proposed block verification algorithm is sum-
marized in Algorithm 4.

VI. ANALYSIS OF THE PROPOSED BLOCKCHAIN

CODING SCHEME

A. Data Availability

The proposed distributed block encoding scheme assumes
that we replace storing t blocks by storing only one vector vj

defined in (3) and the hashes of the block headers, and the
size of vj is equal to the size of one block. However, at any
time, any block or block header can be recovered by any node
with the proposed low complexity block recovery algorithm,
as described in Section III-C. Additionally, for a blockchain
with a larger number of nodes, any node can be offline or
experiences data loss while still maintaining a reliable block
availability.

B. Malicious Nodes Detection

We would like to point out that the proposed scheme can
also be potentially used for the detection of malicious nodes.
For instance, consider the scenario where node c wants to
recover group Gm and hence requests certain vectors vj from
corresponding nodes. Assume further that several malicious
nodes send back fake vectors v′j. Despite of this, if the number
of such fake vectors is not too large, node c still will be capable
to correctly reconstruct blocks from Gm and also detect the
fake vectors v′j. The reason for this is that the LDPC code can
correct not only erasures, which correspond to unaccessible
nodes, but it can also identify errors, which correspond to
fake v′j and correct them. After this, node c can broadcast
the information about malicious nodes over the network and
possible penalties can be applied to the malicious nodes.

Such kind of algorithms need further studies and will be
considered in future work.

C. Replay Attack Prevention

In a replay attack, an attacker could copy a whole transac-
tion T1 that has already been accepted and then resend it at
a later time (we refer to this copy as T2). This could happen
if network congestion occurs such that T2 arrives before T1 at
one node. In this case, the timestamp will help. Specifically,
the timestamp of T2 is definitely later than T1, then finally
when T1 arrives, the node will replace T2 by T1, as the two
transactions are exactly the same except the timestamp.

Another situation occurs when the blockchain has forks. For
example, an attacker could copy the digital signature from
an accepted transaction on one chain and then resend it to
the other new chain, and the new chain may also accept it.
To address this concern, we could append a new field “fork”
in the account-balance table for the all-light-node blockchain.
The “fork” field will indicate the “public-key balance” pair
belongs to which blockchain branch.

D. Robustness to Adversarial Attacks

Let us assume that among the network nodes, there are τ

malicious nodes that send to other nodes wrong code sym-
bols. So, if the code symbols stored by a malicious node is
say α ∈ Fq, then it sends to other nodes β ∈ Fq instead.
This is equivalent to saying that malicious nodes introduce

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

WU et al.: DISTRIBUTED ERROR CORRECTION CODING SCHEME FOR LOW STORAGE BLOCKCHAIN SYSTEMS 7067

errors, and now our LDPC code should correct both erasures
and errors. LDPC codes are capable of doing this. A small
problem, however, is that the most powerful soft-decision
decoding algorithm of LDPC codes needs to know the channel
probability of error. This probability is τ/n, however, since the
number τ is not known to us we cannot find this probability.
However, an LDPC code still can correct errors using one of
the following two approaches.

First, we can use the hard-decision decoding of LDPC
codes. There are a large number of papers on hard-decision
decoding of LDPC codes, starting from the original Gallager
paper [19], in which he considered bit-flipping decoding algo-
rithms A and B, and up to modern papers (see [37]–[39] and
references therein). Such algorithms do not require symbol
error probability at all, and they still result in an excellent
performance, as it was observed by R. Gallager 56 years ago.

Second, we can use a soft decision decoding as follows. We
assume that the number of malicious nodes is never greater
than τmax and construct LDPC codes capable of correcting
errors and erasures in the channel with error probability τmax/n
and some given probability of erasures. Let the probability of
decoding error of this code be Pde, and this Pde be small
enough for our purposes. If now the actual number of mali-
cious nodes τ < τmax, we still can use the same soft-decision
decoding assuming the same channel error probability. Let in
this case, the decoding error probability be P′de. Despite that
we use in the channel error probability τmax/n instead of τ/n,
we will have most likely P′de < Pde, since the total number of
errors τ is smaller than τmax. This approach will be worked
out in full detail in future work.

E. Storage Comparison

This section compares the required storage cost for different
blockchain systems. Note that only the storage space related
to blocks and block headers are counted.

Assume that at a given time instant, the total number of
blocks in the blockchain is mt and each block has the size of
k symbols over Fq. Moreover, the total number of nodes in
the network is n.

In a standard (uncoded) blockchain system with n full nodes
(since only full nodes store blocks), the total storage usage
amounts to nmtk symbols.

Perard et al. [18] proposed the blockchain that consists of
low-storage nodes and conventional full nodes and light nodes.
The low-storage nodes conduct the encoding scheme using
erasure codes. In the scheme of [18], each low-storage node
would require only z (z < k) symbols for each block. Let
us assume further there are n′ low-storage nodes and n con-
ventional full nodes in the blockchain proposed in [18]. As
a result, the storage space required with the scheme of [18]
is n′mtz + nmtk symbols. When z = 1, the minimum storage
needed is thus n′mt + nmtk symbols.

In the proposed blockchain system using the distributed
block coding scheme, assume an [N, t] LDPC code is
employed and each group is comprised of t blocks.
Consequently, the overall (for all nodes together) required stor-
age resource for all the blocks is only mnk symbols. If the

same LDPC code is applied in encoding a group of t block
headers and each block header is partitioned into kh symbols,
then extra mnkh symbols are needed. Furthermore, assume a
hash function with a fixed output of d symbols (d � k) is
used, as each node also stores the hashes of all block headers,
then the additional storage for these hashes is mntd symbols.
In total, the required storage space is mn(k+kh+ td) symbols.

Compared with the uncoded blockchain, the storage sav-
ing is up to [tk/(k + kh + td)] times, or alternatively [(1 −
ε)kN]/[αk + αkh + (1 − ε)Nd], by substituting the relations
R = t/N ≤ (1 − ε)/α, which is defined at the end of
Section III-A. Moreover, it is worth pointing out that the stor-
age saving would be significant, especially when t is large,
i.e., when a large number of blocks is included in a group.

On the other hand, if the relation N > n + n′ holds for
the selected LDPC codes, then the overall required storage
amounts to m(n + n′)(k + kh + td) with extra n′ nodes in
the proposed blockchain. As a consequence, if n′ ≤ ([n(tk −
k − kh − td)]/[k + kh + td − t]) holds [or alternatively n′ ≤
([n((1−ε)N(k−d)−αk−αkh)]/[αk+αkh+(1−ε)N(d−1)])],
then the overall required storage with the proposed blockchain
system is smaller than the counterpart scheme in [18].

F. Communication Cost Reduction

We point out that in addition to the substantial storage cost
reduction, the proposed blockchain with all light nodes also
reduces the communication cost. Since in this scheme, only
the block headers are broadcasted in the network, as opposed
to the entire blocks. The only disadvantage of this scheme is
that the nodes can reconstruct full blocks with some delay.
At the same time, if a node needs a specific block before the
block encoding is conducted, then this node can request the
desired block immediately from its miner.

G. Compatibility With Increasing Number of Nodes

As the parameter pair [N, t] is fixed in the proposed block
coding scheme, the event that n > N could happen, i.e., the
number of nodes in the blockchain is larger than the length
of the coded symbols. To deal with the above situation, we
consider the following two cases: 1) n is slightly larger than
N and 2) n is significantly larger than N.

To conquer the first problem, each triplet (vj, j, m) can be
sent to node j and node N + j. In this way, if a node needs
to recover a block, the probability of receiving the same vec-
tors vj from different nodes is small, and thus it has a small
side effect on the block recovery performance. For the second
problem, each node in the blockchain may employ multiple
LDPC codes with different codeword lengths, i.e., various
values of N.

H. Experimental Results

This section assesses the performance of the proposed dis-
tributed block coding scheme, i.e., the storage usage at each
node of the proposed blockchain system and the performance
of the block recovery algorithm are evaluated, in a blockchain
simulation platform using the account-balance table.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

7068 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

TABLE III
DATA STRUCTURE OF A BLOCK IN THE SIMULATION PLATFORM

In this section, a (dv, dc) = (3, 4) regular LDPC code
with [N, t]q = [4000, 1000]216 is utilized as an example.
Additionally, the protograph-based LDPC codes with vari-
ous codeword lengths (these codes are taken from [40]) are
also used to evaluate the performance of recovering a group
of blocks. The codes are constructed in the following way.
Specifically, a binary parity-check matrix H1 ∈ F

(N−t)×N
2 is

first obtained using the progressive edge-growth (PEG) algo-
rithm [41]. The purpose of utilizing the PEG algorithm is to
reduce the number of short cycles in the constructed LDPC
codes and hence guarantees the good decoding performance
compared with the randomly constructed codes. Moreover, the
PEG algorithm is popularly employed in LDPC codes con-
struction, and the readers may refer to [32] and [41] and
references therein for more instructions.

At the second step, as the positions of the nonzero elements
(i.e., “1”s) in H1 has been optimized by the PEG algorithm,
then the parity-check matrix F

(N−t)×N
216 is obtained by replacing

these “1”s in H1, with the randomly selected nonzero elements
in F216 . Note that other methods have been investigated for
constructing nonbinary LDPC codes, such as [42]–[44] and
references therein, but the design of such codes is beyond the
scope of this article.

The proposed distributed block coding scheme is imple-
mented on a platform simulating the proposed blockchain with
all light nodes. In this platform, each block is represented
by a r-by-3 matrix, as demonstrated in Table III, where the
“time” field is represented by a counter instead of the real
time. In addition, the transactions at the beginning of a block
are always reward transactions, i.e., a coinbase transaction for
the current miner, followed by the reward transactions for the
verification nodes.

Each entry in a block is originally stored in a decimal for-
mat, which is further converted to one symbol over F216 (i.e.,
four hexadecimal symbols). Moreover, we assume there are
n = 4000 nodes in the blockchain and each group contains
t = 1000 blocks. We also assume that th = 1000 block head-
ers are encoded as a group. Finally, the number of verification
nodes is M = 100. In the simulation, the block header consists
of the first two rows in Table III.

Additionally, for the encoding procedure, each block is
partitioned into k = 900 symbols, while each block header
consists of six symbols over F216 . Note that a hash function
with the output of d = 4 symbols over F216 (i.e., 64 b) is
utilized to compute the hash of each block header.

Next, the simulation platform is run to generate 6000 blocks
in total (i.e., mt = 6000) and on average each block contains

TABLE IV
COMPARISON OF STORAGE REDUCTION AT EACH NODE

FOR DIFFERENT VALUES OF t

TABLE V
PERFORMANCE OF RECOVERING A GROUP OF BLOCKS USING THE

PROTOGRAPH-BASED LDPC CODES FROM [40]

870 symbols. Therefore, the required storage is 5.22 × 106

symbols at each node, assuming each node stores all the full
blocks in the conventional uncoded blockchain.

However, for the proposed blockchain with all light nodes,
by applying the distributed block coding scheme, the required
storage at each node is only 29 436 symbols, i.e., 5400
coded symbols are related to all the blocks, 36 coded sym-
bols are associated with all the block headers, and 24 000
symbols correspond to the hashes of all block headers.
Therefore, a storage reduction by a factor of 177.3 is
achieved.

Note that for a selected [N, t]q LDPC code, the maximum
number of blocks included in a group is fixed at t. Furthermore,
if larger values of [N, t] are used, then the average storage
savings at each node is also larger. Table IV illustrates the
average storage savings at each node, for different numbers
of blocks in a group, assuming the LDPC codes with param-
eters [N, 2000]216 , [N, 3000]216 , and [N, 6000]216 are utilized,
respectively. It can be observed that more storage reduction can
be achieved with increasing t. Note that the storage reduction
increases slowly with increasing t, which is due to the fact that
the storage space for hashes of all block headers is mandatory
(in this case, 24 000 symbols are inevitable).

Additionally, we point out that the storage reduction can
also be more significant with an increasing number of blocks.
Furthermore, considering a large number of nodes exist in
a practical blockchain, the reduced storage space with the
proposed blockchain is huge.

Next, let us evaluate the performance of reconstructing a
whole group of blocks with the protograph-based LDPC codes
optimized in [40]. We will show that the decoding performance

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

WU et al.: DISTRIBUTED ERROR CORRECTION CODING SCHEME FOR LOW STORAGE BLOCKCHAIN SYSTEMS 7069

TABLE VI
COMPARISON FOR THE PROBABILITY THAT WE WILL NEED SYMBOLS AT LEVEL Li FOR RECOVERING A DESIRED SYMBOL, WITH SIMULATION AND

PREDICTION RESULTS

approaches the theoretical erasure channel capacity. Table V
shows the probabilities of successful group recovery with
different probabilities of node loss in blockchain systems,
for various codeword lengths. Vakilinia et al. [40] proposed
the design of rate compatible protograph-based raptor-like
LDPC codes for binary erasure channels, with rates rang-
ing from (1/6) to (8/9). We construct the codes C1 and C2
from [40, relations (1), (15), and (16)] using the PEG algo-
rithm, while code C3 is derived from [40, relations (1), (17),
and (18)]. Note that the codes in [40] consist of punctured
symbols. In other words, the original codeword lengths of
C1, C2, and C3 are 4257, 12375, and 67584, respectively, with
the first 129, 375, and 2048 symbols punctured. The listed
values of code parameter Na in Table V are the number
of symbols that are actually distributed over the blockchain
network. Moreover, the probabilities of successful recovery
with codes C1, C2, and C3 in Table V are averaged by run-
ning the recovery algorithm for 105, 20 000, and 1000 times,
respectively.

Theoretically, for erasure channels (this is the case in the
blockchain scenario), a code with rate 1/4 can tolerate a prob-
ability of node loss 0.75. As can be observed from Table V,
the overhead is around [(1− 0.69)/(1− 0.75)]− 1× 100% ≈
24% for code C1, and the overhead decreases to around
[(1 − 0.73)/(1− 0.75)] − 1 × 100% ≈ 8% for code C3
with much longer codeword length. This also implies that the
decoding performance improves with the increasing number of
nodes in blockchain systems. Furthermore, taking code C1 as
an example, we can enlarge the set of nodes L by randomly
adding �(1 − 0.71) ∗ 4128	 = 11982 nodes (see the results
for code C1 in Table V) for step 1 of Algorithm 1, and fur-
ther enlarge the set with extra �0.01 ∗ 4128	 = 42 nodes. In
this case, a node has around 94.824% successful probability
of recovering a group of blocks, after adding 1198 nodes into
set L at its first try, as shown in Table V. If it fails, then the
proposed Algorithm 1 will be conducted at most several times,
in order to finally reconstruct a group.

Subsequently, let us assess the performance of recovering
a single desired symbol. For this, we use a (dv, dc) = (3, 4)

regular LDPC code with parameters [N, t]q = [4000, 1000]216 .
Table VI compares the probability that we will need to contact
the symbols at more than i layers, for a successful recovery,
and these probabilities are denoted by P(i). The subscripts
“sim” and “ana” are used to distinguish between the simu-
lated results and the analytical results computed from (9). The
simulated probability is obtained by averaging over 10 000

2�x	 is the ceiling operation.

simulations. Moreover, recall that the probability of an inactive
node is P(0)

ana = ε.
It can be noted from Table VI that the simulated probabili-

ties match the analytical results quite well. Additionally, even
when ε = 0.2, a single desired symbol can still be recovered
by contacting those symbols at level L2. Note that for higher
values of ε, one may need to request the symbols at deeper
levels.

Finally, we point out that the performance of recovering
a group of blocks and the desired symbol can be further
improved, if the LDPC codes with longer codeword length
N are utilized and if the LDPC codes are well optimized.

VII. CONCLUSION

This article presents a novel distributed block coding algo-
rithm for reducing the storage cost in a blockchain system. The
proposed coding scheme encodes a group of blocks (respec-
tively block headers) using the LDPC codes, and then only
one coded vector is kept at each node in the blockchain.
Moreover, the corresponding block recovery algorithms are
explicitly provided. Furthermore, this article also proposes
a novel blockchain with all light nodes, using the account-
based model. Additionally, a block verification algorithm is
presented, which involves only a small number of verifica-
tion nodes. The proposed distributed block coding algorithm
indeed drastically reduces the storage cost while maintaining
the data integrity and availability of the blockchain.

REFERENCES

[1] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[2] G. Wood. (2014). Ethereum: A Secure Decentralised Generalised
Transaction Ledger. [Online]. Available: https://gavwood.com/paper.pdf

[3] D. Schwartz, N. Youngs, and A. Britto. (2014). The
Ripple Protocol Consensus Algorithm. [Online]. Available:
https://ripple.com/files/ripple_consensus_whitepaper.pdf

[4] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Proc. Annu. Int.
Cryptol. Conf. (CRYPTO), Aug. 2017, pp. 357–388.

[5] E. Ben-Sasson et al. (2014). ZeroCash: Decentralized
Anonymous Payments From Bitcoin. [Online]. Available:
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf

[6] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “MedRec: Using
blockchain for medical data access and permission management,” in
Proc. 2nd Int. Conf. Open Big Data (OBD), Vienna, Austria, Aug. 2016,
pp. 25–30.

[7] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “HAWK:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proc. 37th IEEE Symp. Security Privacy, May 2016,
pp. 839–858.

[8] S. Underwood, “Blockchain beyond bitcoin,” Commun. ACM, vol. 59,
no. 11, pp. 15–17, Oct. 2016.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

7070 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

[9] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[10] J. Gao et al., “GridMonitoring: Secured sovereign blockchain based
monitoring on smart grid,” IEEE Access, vol. 6, pp. 9917–9925, 2018.

[11] F. Lombardi, L. Aniello, S. D. Angelis, A. Margheri, and V. Sassone, “A
blockchain-based infrastructure for reliable and cost-effective IoT-aided
smart grids,” in Proc. IET Conf. Living Internet Things Cybersecurity
IoT, London, U.K., Mar. 2018, pp. 1–6.

[12] R. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun, “Blockchain for
large-scale Internet of Things data storage and protection,” IEEE Trans.
Service Comput., vol. 12, no. 5, pp. 762–771, Sep. 2019.

[13] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[14] Blockchain. Accessed: Feb 8, 2019. [Online]. Available: https://www.
blockchain.com/en/charts/blocks-size#

[15] A. Churyumov. (2016). ByteBall: A Decentralized System
for Storage and Transfer of Value. [Online]. Available:
https://byteball.org/Byteball.pdf

[16] M. Dai, S. Zhang, H. Wang, and S. Jin, “A low storage room requirement
framework for distributed ledger in blockchain,” IEEE Access, vol. 6,
pp. 22970–22975, 2018.

[17] R. K. Raman and L. R. Varshney, “Dynamic distributed storage for
blockchains,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018,
pp. 2619–2623.

[18] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasure code-based
low storage blockchain node,” in Proc. IEEE Int. Conf. Internet
Things (iThings) IEEE Green Comput. Commun. (GreenCom) IEEE
Cyber Phys. Soc. Comput. (CPSCom) IEEE Smart Data (SmartData),
Jul. 2018, pp. 1622–1627.

[19] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA,
USA: MIT Press, 1963.

[20] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” J. ACM, vol. 27, no. 2, pp. 228–234, Apr. 1980.

[21] Transaction. Accessed: Feb 8, 2019. [Online]. Available:
https://en.bitcoin.it/wiki/Transaction

[22] Protocol Rules. Accessed: Feb 8, 2019. [Online]. Available:
https://en.bitcoin.it/wiki/Protocol_rules#.22tx.22_messages

[23] C. Merkle, “Protocols for public key cryptosystems,” in Proc. Symp.
Security Privacy, Apr. 1980, pp. 122–133.

[24] L. Rizzo, “Effective erasure codes for reliable computer communica-
tion protocols,” ACM SIGCOMM Comput. Commun. Rev., vol. 27, no. 2,
pp. 24–36, Apr. 1997.

[25] Block Size Limit Controversy. Accessed: Feb 8, 2019.
https://en.bitcoin.it/wiki/Block_size_limit_controversy

[26] Etherchain. Accessed: Feb 8, 2019. [Online]. Available:
https://www.etherchain.org/charts/blockSize

[27] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 569–584, Feb. 2001.

[28] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. London, U.K.:
Pearson Educ., 2004.

[29] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary
LDPC codes over GF(Q),” IEEE Trans. Commun., vol. 55, no. 4,
pp. 633–643, Apr. 2007.

[30] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge,
U.K.: Cambridge Univ. Press, 2009.

[31] G. Liva et al., “Design of LDPC codes: A survey and new results,” J.
Commun. Softw. Syst., vol. 2, no. 3, pp. 191–211, Sep. 2006.

[32] Y. Fang, G. Bi, Y.-L. Guan, and F. C. M. Lau, “A survey on proto-
graph LDPC codes and their applications,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 4, pp. 1989–2016, May 2015.

[33] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[34] S. Das, V. J. Ribeiro, and A. Anand, “YODA: Enabling computationally
intensive contracts on blockchains with Byzantine and selfish nodes,” in
Proc. Netw. Distrib. Syst. Security Symp. (NDSS), San Diego, CA, USA,
Feb. 2020, pp. 1–15.

[35] T.-W. Chao, H. Chung, and P.-C. Kuo, “Fair Byzantine agreements for
blockchains,” Jul. 2019. [Online]. Available: arXiv:1907.03437.

[36] P. Tholoniat and V. Gramoli, “Formal verification of blockchain
Byzantine fault tolerance,” Oct. 2019. [Online]. Available:
arXiv:1909.07453.

[37] H. Cui, J. Lin, and Z. Wang, “An improved gradient descent bit-flipping
decoder for LDPC codes,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 66, no. 8, pp. 3188–3200, Aug. 2019.

[38] Y. Liu and M. Zhang, “Hard-decision bit-flipping decoder based on adap-
tive bit-local threshold for LDPC codes,” IEEE Commun. Lett., vol. 23,
no. 5, pp. 789–792, May 2019.

[39] T. C.-Y. Chang, P. Wang, and Y. T. Su, “Multi-stage bit-flipping decod-
ing algorithms for LDPC codes,” IEEE Commun. Lett., vol. 23, no. 9,
pp. 1524–1528, Sep. 2019.

[40] K. Vakilinia, D. Divsalar, and R. D. Wesel, “Protograph-based raptor-
like LDPC codes for the binary erasure channel,” in Proc. Inf. Theory
Appl. Workshop (ITA), San Diego, CA, USA, Feb. 2015, pp. 240–246.

[41] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular pro-
gressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2005.

[42] E. Boutillon, “Optimization of non binary parity check coefficients,”
IEEE Trans. Inf. Theory, vol. 65, no. 4, pp. 2092–2100, Apr. 2019.

[43] L. Dolecek, D. Divsalar, Y. Sun, and B. Amiri, “Non-binary protograph-
based LDPC codes: Enumerators, analysis, and designs,” IEEE Trans.
Inf. Theory, vol. 60, no. 7, pp. 3913–3941, Jul. 2014.

[44] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc)-
LDPC codes over GF(q) using their binary images,” IEEE Trans.
Commun., vol. 56, no. 10, pp. 1626–1635, Oct. 2008.

Huihui Wu received the B.Sc. degree in commu-
nication engineering from the Southwest University
for Nationalities, Chengdu, China, in 2011, the M.S.
degree in communication engineering from Xiamen
University, Xiamen, China, in 2014, and the Ph.D.
degree in electrical and computer engineering from
McMaster University, Hamilton, ON, Canada, in
2018.

From November 2018 to April 2019, he was
a Postdoctoral Research Scientist with Columbia
University, New York, NY, USA. He is currently

a Postdoctoral Researcher with McGill University, Montreal, QC, Canada.
His research interests include channel coding, joint source and channel cod-
ing, signal quantization, wireless communications, blockchain, and machine
learning.

Alexei Ashikhmin (Fellow, IEEE) received the
Ph.D. degree in electrical engineering from the
Institute of Information Transmission Problems,
Russian Academy of Science, Moscow, Russia, in
1994.

He is a Distinguished Member of Technical Staff
with the Communications and Statistical Sciences
Research Department, Nokia Bell Laboratories,
Murray Hill, NJ, USA. He is also an Adjunct
Professor with Columbia University, New York, NY,
USA, where he teaches courses on quantum com-

puting and error correction, digital communications, and error correcting
codes. His research interests include communications theory, massive MIMO
systems, theory of error correcting codes and its modern applications, as well
as classical and quantum information theory.

Dr. Ashikhmin was a recipient of the 2017 SPS Donald G. Fink Overview
Paper Award for the article “An Overview of Massive MIMO: Benefits
and Challenges” published in the IEEE JOURNAL OF SELECTED TOPICS

IN SIGNAL PROCESSING, and the Bell Laboratories President Award for
breakthrough research in wired and wireless communication projects, in
2002, 2010, and 2011. He received the Thomas Edison Patent Award
in the Telecommunications for a Patent on Massive MIMO System with
Decentralized Service Antennas in 2014 and the IEEE Communications
Society Stephen O. Rice Prize for the best paper published in the IEEE
TRANSACTIONS ON COMMUNICATIONS in 2004.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

WU et al.: DISTRIBUTED ERROR CORRECTION CODING SCHEME FOR LOW STORAGE BLOCKCHAIN SYSTEMS 7071

Xiaodong Wang (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from Princeton
University, Princeton, NJ, USA.

He is a Professor of electrical engineering
with Columbia University, New York, NY, USA.
His research interests fall in the general areas
of computing, signal processing and communica-
tions, and has published extensively in these areas.
Among his publications is a book entitled Wireless
Communication Systems: Advanced Techniques for
Signal Reception (Prentice-Hall in 2003). His current

research interests include wireless communications, statistical signal process-
ing, and genomic signal processing.

Dr. Wang received the 1999 NSF CAREER Award, the 2001 IEEE
Communications Society and Information Theory Society Joint Paper Award,
and the 2011 IEEE Communication Society Award for Outstanding Paper on
New Communication Topics. He has served as an Associate Editor for the
IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE TRANSACTIONS

ON WIRELESS COMMUNICATIONS, the IEEE TRANSACTIONS ON SIGNAL

PROCESSING, and the IEEE TRANSACTIONS ON INFORMATION THEORY.
He is listed as an ISI Highly-cited Author.

Chong Li (Senior Member, IEEE) received
the B.E. degree in electrical engineering from
Harbin Institute of Technology, Harbin, China, and
the Ph.D. degree in electrical engineering from
Iowa State University, Ames, IA, USA.

He worked with Qualcomm Research,
Bridgewater, NJ, USA, on the development of 4G
LTE and 5G technologies. He is a Co-Founder of
Nakamoto & Turing Labs, New York, NY, USA.
He is also an Adjunct Professor with Columbia
University, New York, NY, USA. He has holder

of over 200 international/U.S. patents (granted and pending). He has been
actively publishing papers on top-ranking journals. He has authored the book
Reinforcement Learning for Cyber-Physical Systems (Taylor & Francis and
CRC Press). He has broad research interests, including information theory,
blockchain, machine learning, networked control communications theory,
and systems design for advance telecommunication technologies (5G and
beyond).

Dr. Li served as a reviewer and the technical program committee for
most prestigious journals and conferences in communications and control
societies.

Sichao Yang received the M.S. degree from the
Department of Mathematics and the Ph.D. degree
from the Department of Electrical and Computer
Engineering from the University of Illinois at
Urbana–Champaign, Champaign, IL, USA.

He is a Co-Founder and the CEO of Nakamoto
& Turing Labs, New York, NY, USA, a research
lab engaged in scientific and engineering research in
the fields of blockchain and distributed computing
technologies. His Ph.D. research is on game the-
ory with its application on resource allocation and

optimization in distributed networks. He was a Senior Staff Engineer with
Qualcomm Inc., San Diego, CA, USA, the world’s leading wireless com-
munications chip and service provider. During his tenure in Qualcomm, he
was one of the key contributors to the design and development of the fourth
and fifth generation mobile communication. He also served as the Technical
Leader in Qualcomm’s research on vehicular network and autonomous driv-
ing and holds many invention patents.

Dr. Yang has many journal and conference papers and served as a Reviewer
for the Mathematics of Operations Research, the IEEE TRANSACTIONS ON

NETWORKING, Games and Economics Behavior, and other magazines. He
also gave invited talks and tutorial sessions on IEEE conferences, including
IEEE GLOBECOM and IEEE Summit on Communications Futures.

Lei Zhang received the B.E. and M.S. degrees in
electronics engineering from Tsinghua University,
Beijing, China, in 2005 and 2007, respectively,
and the Ph.D. degree in electrical engineering and
computer science from Northwestern University,
Evanston, IL, USA, in 2012.

He was with Qualcomm Research, Bridgewater,
NJ, USA. He is a Co-Founder of Nakamoto &
Turing Labs, New York, NY, USA, and also an
Adjunct Professor with Columbia University, New
York. His research interests include blockchain

systems, information theory, machine learning, and computer vision.
Dr. Zhang was a recipient of the Student Paper Award of the IEEE

International Symposium on Information Theory in 2011. He also received
the Walter P. Murphy Fellowship and Terminal Year Fellowship from
Northwestern University in 2007 and 2011, respectively.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 17,2021 at 01:59:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

